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Abstract. We study numerically the two-component spreading model (SMK) for concave and
convex radial growth two-dimensional geometries. The seed is chosen to be an occupied circle
line, and the growth spreads inside the circle (concave geometry) or outside the circle (convex
geometry). On the basis of a generalized diffusion–annihilation equation for domain evolution,
we derive mean-field relations that describe quite well the results of numerical investigations.
We conclude that the intrinsic universality of the SMK does not depend on the geometry, and
that the dependence of criticality on curvature observed in numerical experiments is only an
apparent effect. We discuss the dependence of the apparent critical exponentχa upon the
growth geometry and initial conditions.

1. Introduction

Nonequilibrium growth and spreading phenomena are common in nature. Examples include
such processes as irreversible adsorption or deposition on the surface, liquid invasion in
porous media, forest fire, crystal growth, evolution of damage in mechanical or electrical
systems, epidemic spreading, etc. Presently, different varieties of such phenomena are
extensively studied using numerical models [1–6]. The simplest models deal with ideal
species of the same size (or type) and the main focus of attention is investigation of
the interrelations between growth mechanism, surface equilibration efficiency, details of
interparticle interactions and pattern morphology.

But ideal systems of monospecies rarely occur in nature and certain variations of physical
or structural properties are almost always present in such systems. The nonideal polydisperse
or multicomponent systems are of great scientific and practical interest [7, 8]. Recently,
various growth models with two species or phases in competition [9–14], and also the
multicomponent Potts growth model [15, 16] have been investigated. The two-component
growth model of Saito and Muller-Krumbhaar (SMK) [9] generalizes the Eden model [17]
for the case of two different species (A and B) competition. The authors [9] observe
the criticality of the two-dimensional model for the case of equal growth rates of two
components in a half-space planar geometry, i.e. for the case where the growth starts from a
linear seed line. This criticality results from the rules of species attachment at the growing
front, which exclude the nucleation ofA species in the neighbourhood of a domain consisting
only of B species, and vice versa. The model reveals the competitive growth of separate
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domains and their coarsening. In the limit of large-time or, equivalently, of a large front
height (h), power-law decay is found for the number of interdomain boundariesNAB ,

NAB ∼ h−χ (1)

where χ = 2
3 is the critical exponent for meandering interfaces [18]. More recently,

Vandewalle and Ausloos [10] have concluded that the criticality of the SMK model is not
universal and depends on the assumed geometry of the two-component propagation. They
have shown that if the growth starts from a central site of the initialAB configuration,
the value of the critical exponentχ may differ considerably from that observed for the
half-space planar geometry (χ = 2

3). It should be noted that the geometry can affect
the fractal dimension of a diffusion limited aggregation-like pattern in a closed cavity, as
was observed in [19]. Recently, Batcheloret al [20] have shown that, for the usual two-
dimensional radial Eden model, the growing scaling exponentβ governing the interface
roughening considerably exceeds the value ofβ = 1

3, which is typical for stochastic growth
on a planar substrate (in 1+1 dimensions), and only approaches this value in the asymptotic
limit of the very large Eden cluster radius.

This paper studies the kinetics of two-component spreading on curved surfaces in an
assumed SMK model. The evolution of domains, their diffusion and annihilation, takes
place on a two-dimensional square lattice, and the growth spreading is either confined
inside the circle (concave geometry), or takes place outside the circle (convex geometry).
For infinitely large radius of the circle,R →∞, we revive half-space or planar geometry
[9]; for the other limit ofR → 0 we consider the spreading in a free space [10]. This
modified model allows us more precisely to control the influence of geometry on criticality.
We use the mean-field diffusion–annihilation approach and SMK model simulations for
the calculation of density profiles for the wall boundaries betweenA andB domains as a
function of distance from the seed wallh for seed circles of different radius,R. It will be
shown that even in the case where criticality remains unchanged, the apparent value of the
critical exponent of domain wall spatial distribution may vary, and that it depends on the
geometry and initial distribution ofA andB domains on the seed line.

The remainder of the paper is organized as follows. Section 2 presents a brief description
of the model and simulation details. Section 3 is devoted to our results and discussion.
Section 3.1 contains theoretical discussion on the issue of universality for the competitive
growth model with curved seed line. Here, we use the mean-field approach to describe the
domain wall coalescence. In section 3.2 we present the results of a numerical simulation,
performed using the SMK algorithm of [9], in order to test the theory exploited in section 3.1.
Section 4 contains our conclusions.

2. Model and simulation details

We have used the simple two-component SMK growth model [9] with equal growth rates
for the two components. The simulation takes place on a square lattice. In this model, as
in the Eden model, new particles attach to the growing cluster only along its perimeter.
However in the SMK model the probability of filling any empty perimeter site either by
A or by B species is in proportion to their concentration on the surface at the propagation
front. Growth starts from a circular seed line and develops as growth front propagation for
two different cases.
• Inside circular closed cavity. This is the case of concave geometry, or inside

propagation (IP).
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Figure 1. The typical growth spreading (a) inside the circular cavity of radiusR = 1000
and (b) outside the circular exclusion of radiusR = 60 for the two-species SMK model. The
light concentric circles are the time snapshots of fronts for each next group of 300 000 particles
attachment. The heavy lines show theAB domain interfaces.

• Outside the circular closed cavity. This is the case of convex geometry, or outside
propagation (OP).

The maximal size of studied systems was 2000× 2000 grid points and the intergrid
distance was set asd = 1. For each case, 100–500 samples were averaged.

The simulation was carried out for differently ordered initial configurations, including
the case of the maximal density of domain boundaries with short correlation lengthλd = 1,
where singleA andB alternate, as:

. . . A B A B A B A B A B A B . . . . (2)

Lower densities of domain boundaries, with larger correlation length (λd = 3 for the case
displayed), when there is an alternation of largerA andB domains with equalλd length
were also considered, as:

. . . A A A B B B A A A B B B . . . . (3)

If the initial number of domain boundaries is equal toN0
AB , then the initial linear density

of the domain walls will be equal toρ0 = N0
AB/L, whereL = 2πR is the length of the

seed line. For the case displayed as the seed line (2) we haveρ0 = ρmax≈ 1 and

N0
AB = Nmax≈ 2πR (4)

and for the more common case displayed as the seed line (3) we haveρ0 ≈ 1/λd and
N0
AB ≈ 2πR/λd .

Figure 1 shows the typical spreading patterns of (a) the IP case with the radius of the
closed cavityR = 1000 and (b) of the OP case with radius of circular exclusionR = 60.
The light concentric circles are time snapshots of the front evolution at the moment of each
next 300 000 particles attachment. The heavy lines show theAB interdomain boundaries.
In the OP case the simulation terminates when the maximal radius of growth frontrmax

reaches the boundaries of system (rmax= 1000). The initial density of boundaries is chosen
to be maximal,ρ0 = ρmax≈ 1, as displayed in the seed line (2). Note, that for both IP and
OP cases we observe a generally quick decrease of the number of interdomain boundaries
NAB in initial periods of time, near to the surface of circular seed line.
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3. Results and discussion

3.1. Mean-field approach

The domain evolution can be described in terms of an annihilation reaction of domain
boundaries. If we associate each domain boundary with a phantom particleÂ, then we can
consider domain coarsening as a diffusion–annihilation reaction of aÂ+ Â→ ∅ [9] type.
For a linear seed line, the time evolution of the density,ρ = NAB/L, satisfies a mean-field
rate equation

dρ

dh
= −aρ1+1/χ (5)

giving ρ ∼ h−χ , whereh is the height of the front, which is equivalent to the time, anda

is the annihilation rate constant.
We haveχ = 1

2 for normal Brownian motion [21–23], andχ = 2
3 for a two-species

Eden [18] or SMK [9] model.
Using the simulation for planar geometry, we have estimated the annihilation rate

constant as

a = 2.5± 0.2 (6)

where the data used in estimation were averaged over 100 different samples.
In the case of radial geometry, equation (5) should be modified. Here we have an

additional source ofρ rate variations due to the spreading front shrinkage, or dilation, for
the cases of growth spreading inside the circle (concave geometry), or outside it (convex
geometry), respectively. The domain densityρ at the distance ofr = R∓h from the centre
of the seed circle is equal to

ρ = NAB

2π(R ∓ h) (7)

whereh is the distance from the seed circle, and, here and hereinafter, the upper sign (−)
corresponds to the front spreading inside the seed circle (IP case, concave geometry) and the
under sign (+) corresponds to the front spreading outside the seed circle (OP case, convex
geometry). Taking (7) into account, we obtain (instead of (5)) the following rate equation
for the above-mentioned cases of radial spreading withρ(0) = ρ0 as the initial condition:

dρ

dh
= −aρ1+1/χ − ρ

R ∓ h. (8)

Introducing the new scaled variablesy = ρRχ , andx = h/R, we can rewrite (8) in a
scaled form

dy

dx
= −ay1+1/χ − y

1∓ x . (9)

Equation (9) is a Bernoulli equation and with substitution oft = y−1/χ it reduces to

dt

dx
− t

1∓ x =
a

χ
. (10)

The solution of (10) with the initial condition oft (0) = t0 = ρ−1/χ
0 /R has the following

form

t (x) = t0(1∓ x)1/χ [±V (1∓ x)1−1/χ + 1∓ V ] (11)

where

V = a/(t0(1− χ)) = aRρ1/χ
0 /(1− χ). (12)
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Figure 2. The mean-field dependence of the scaled densityy/ymin (y = ρRχ ) versus scaled
height of the frontx = h/R for the growth spreading inside the circular cavity (full curves)
and outside the circular exclusion (broken curves) at different values ofV = aRρ1/χ

0 /(1− χ).
The value ofymin as defined by (16) corresponds to the minimum ofy(x) function in the point
x = xmin = 5

9 (for χ = 2
3 , see (15)) for growth spreading inside the circular cavity in the limit

of V →∞.

Taking into account the inverse substitutiony = t−χ , we obtain the following final
solution of differential equation (9)

y(x) = y0

(1∓ x)[±V (1∓ x)1−1/χ + 1∓ V ]χ
(13)

wherey0 = ρ0R
χ .

For the IP case, when the spreading takes place inside the circle, the valuey(x) goes
through the minimum at the point of

xmin(V ) =

 1−
(

χ

1− 1/V

) χ

χ−1

for V > 1/(1− χ)

0 for V < 1/(1− χ).
(14)

For the case whenV →∞, we have

xmin = lim
V→∞

xmin(V ) = 1− χ χ

χ−1 (15)

and

ymin = lim
V→∞

y(xmin) = a−χχ
−χ2

1−χ . (16)

Figure 2 presents they/ymin versusx dependencies obtained from (13) and (16) for
χ = 2

3 at different values ofV for the cases of growth spreading inside the circle (full
curves) and outside the circle (broken curves). The slope value− 2

3 accounts for the slope
of lines in the limit ofV →∞ for the spreadings both inside and outside the circle, and the
slope value−1 accounts for the line slopes in the limit ofx →∞ for the growth spreading
outside the circle.
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Figure 3. The effective critical exponentχa versus scaled distance from the seed surface
x = h/R for both concave (broken curves) and convex (full curves) geometries at different
values ofV = aRρ

1/χ
0 /(1− χ). Arrow shows the classical value ofχ = 2

3 for the planar
geometry.

We can define from (1) the apparent value of the critical exponentχa as

χa = −d lnNAB
d lnh

. (17)

Figure 3 shows a plot of the apparent critical exponentχa versus scaled distance from
the seed surfacex for both concave (broken curves) and convex (full curves) geometries.
We see that for propagation started from the curved seed line the value of the apparent
exponentχa is not constant and strongly depends onx.

Not far from the seed surface, atx → 0, with high initial density valueρ0 = ρmax≈ 1
and the limit ofV → ∞, the intrinsic valueχa = χ = 2

3 is observed. The observedχa
values substantially decrease with initial density decrease. Theχa value always increases
with the x increase for the IP case. For the OP case, theχa goes through the maximum.
We should stress that these are only apparent changes of critical exponents, estimated on
the basis of (17), because all calculations were done for the universal system in assumption
of constancy of the intrinsicχ -value (χ = 2

3).

3.2. Numerical simulation

The dependencies ofy = ρRχ uponx = h/R obtained as results of numerical simulations
are depicted in figure 4 for (a) the IP case and (b) the OP case. The different points
correspond to different radii of the initial circular seed lines. All these data are for the
case of the maximal initial density of domain boundaryρ0 = ρmax ≈ 1 with the ordered
configuration ofA andB species, as in the seed line (2). The continuum limit for this
case corresponds to the situation whereR � 1 and we can neglect the lattice discreteness.
The full curves in figure 4 were obtained from (13) for the case ofχ = 2

3, V → ∞ in
the continuum limit. We see that the coincidence between the results of the mean-field
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(a)

(b)

Figure 4. The scaled densityy = ρRχ versus scaled height of the frontx = h/R for the
growth spreading (a) inside the circular cavity and (b) outside the circular exclusion. The
different points are the simulation results for different cavity (a) or exclusion (b) radii, as
marked on the figures. All data are obtained for the limit case ofρ0 = ρmax, for configuration
shown by line (2). The full curves are obtained from the mean-field equation (13) where we used
a = 2.5± 0.2 (6) estimated by simulation for the case of planar geometry. Point of minimum
x = xmin = 5

9 ≈ 0.561 is defined by the (15) forχ = 2
3 .

approximation and the computer simulation is rather good. It is important to note that in
the limit case of higher initial density ofAB boundaries all data obtained at different values
of R in the scaled coordinatesρRχ versusx = h/R fall on the same curves for both IP
and OP cases.
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(a)

(b)

Figure 5. The scaled densityy = ρRχ versus scaled height of the frontx = h/R for
(a) the growth spreading inside the circular cavity or radiusR = 800 and (b) outside the
circular exclusion or radiusR = 60. The full curves are the simulation results for different
initial numbers of domain interfaces (a): N0

AB = 20(1), 40(2), 80(3), Nmax(4), and (b):
N0
AB = 10(1), 20(2), 40(3), 90(4), Nmax(5). Broken curves are obtained for the same numbers

of domain interfaces through the mean-field result (13) where we useda = 2.5 ± 0.2 (6),
estimated by simulation for the case of planar geometry.

For relatively small values of the initial densityρ0, when we start propagation from a
configuration with a limited number of domain boundaries,NAB ≈ 10–100, the simulation
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results can deviate substantially from the predictions of mean-field theory, as is shown in
figure 5 for (a) the IP case and (b) the OP case. The reason for such deviation is far from
clear, but we think that it may simply reflect the limitations of the mean-field approach which
follow from neglecting the long-range correlations between theAB domain boundaries.

4. Conclusions

We conclude that the apparent critical exponentχa determined on the basis of (17) through
analysis of results of numerical experiments for the SMK model is not universal or of
constant value. In the case of nonplanar geometry, the apparent critical exponentχa
depends on theAB front height, the initial number ofAB domains and on the type of
growth geometry. This conclusion remains true for the SMK model even when the model
preserves its internal universality defined by the classical critical exponentχ = 2

3. The best
agreement between numerical simulation and mean-field approximation results is observed
only at a high initial number of boundariesN0

AB . At a low initial number of boundaries
N0
AB , the mean-field approximation allows only a qualitatively true description. In this

case, the absence of quantitative description may be explained by the effect of long-range
correlations, which result in faults in the mean-field description.

We believe, that the results obtained in this paper coincide qualitatively quite well
with data presented in [10]. The authors there have shown that for an initial configuration
consisting of only two species (AB) the number of boundaries is approximately conserved
at the level ofNAB ≈ 2 and for this case they have obtainedχa ≈ 0. Assuming that for
propagation under such conditionsN0

AB = 2,R ≈ 1, χ = 2
3 and the valuea = 2.5±0.2 (6),

we getV ≈ 1 as estimated from (12). As follows from our data presented in figure 3, when
V is so low, theχa value is small and practically equal to zero at high-enough distances
from the seed centre, which is in correlation with the data obtained in [10]. We believe that
such apparent alterations of criticality or scaling exponential functions may occur in other
models of radial growth, as was observed e.g. in [20] for the Eden model. Similar problems
are worthy of further investigation with an extended range of models, system component
numbers and space dimensionality etc.

Acknowledgments

We are grateful to Marcel Ausloos, Barbara Drossel, Miroslav Kotrla, Sujata Tarafdar, and
Nicolas Vandewalle for providing us with preprints of their works and useful correspondence,
and we thank Natalija Pivovarova for help with preparation of the manuscript. This work
is partly supported by a grant QSU082112 from ISSEP.

References

[1] Feder J 1988Fractals (New York: Plenum)
[2] Takayasu H 1990Fractals in the Physical Sciences(Chichester: Wiley)
[3] Avnir D (ed) 1992 The Fractal Approach to Heterogeneous Chemistry: Surfaces, Colloids, Polymers

(Chichester: Wiley)
[4] Viscek T 1992Fractal Growth Phenomena(Singapore: World Scientific)
[5] Barab́asi A-L and Stanley H E 1995Fractal Concepts in Surface Growth(Cambridge: Cambridge University

Press)
[6] Meakin P 1998Fractals, Scaling and Growth Far From Equilibrium(Cambridge: Cambridge University

Press)
[7] Ren S Z, Tomb́acz E and Rice J A 1996Phys. Rev.E 53 2980



9208 N I Lebovka and N V Vygornitskii

[8] Tarafdar S and Shashwati R 1998PhysicaB to be published
[9] Saito Y and Muller-Krumbhaar H 1995Phys. Rev. Lett.74 4325

[10] Vandewalle N and Ausloos M 1996Phys. Rev.E 54 3006
[11] Drossel B and Kardar M 1997Phys. Rev.E 55 5026
[12] Kotrla M and Predota M 1997Europhys. Lett.39 251
[13] Kotrla M, Predota M and Slanina F 1998Surf. Sci.to be published
[14] Batchelor M T, Henry B L and Watt S D 1998PhysicaA to be published
[15] Vandewalle N and Ausloos M 1995Phys. Rev.E 52 3447
[16] Vandewalle N, Ausloos M and Cloots R 1996J. Cryst. Growth169 79
[17] Eden M 1958Symposium on Information Theory in Biologyed H P Yockey (New York: Pergamon) p 359
[18] Derrida B and Dickman R 1991J. Phys. A: Math. Gen.24 L191
[19] Lebovka N I, Vygornitskii N V and Mank V V 1997Colloid. J. 59 310
[20] Batchelor M T, Henry B L and Watt S DPhysicaA to be published
[21] Smoluchowsky M V 1917 Z. Phys. Chem.92 129
[22] Bramson M and Griffeath D 1980Ann. Prob. 8 183
[23] Torney D C and McConnell H M 1983 J. Phys. Chem.87 1941


